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On the Effect of Stochastic Fluctuations in the
Dynamics of the Lifshitz�Slyozov�Wagner Model
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In this paper the dynamics of a system of spherical particles that fill a small
volume fraction of the space and that evolves in a concentration field is dis-
cussed. Corrections to the Lifshitz�Slyozov�Wagner (LSW) model that take
into account the stochastic character of the problem are computed. It is proved,
under suitable smallness assumptions for the volume fraction filled by the par-
ticles, that the effect of these corrections does not modify much the dynamics of
the self-similar solutions of the LSW system of equations.

KEY WORDS: Ostwald ripening; self-similar solutions; stochastic fluctua-
tions; intermediate asymptotics.

1. INTRODUCTION

The classical Lifshitz�Slyozov�Wagner model (LSW from now on) describes
the distribution of radii of a set of particles whose size changes in time due
to diffusion (cf. refs. 5 and 16). In the LSW model it is assumed that the
particles remain spherical during their evolution and also that the diffusion
field is quasistatic. General reviews on the LSW theory are refs. 14 and 15.

The LSW model admits a family of self-similar solutions that are sup-
posed to describe the long time behaviour of the LSW system of equations
(cf. ref. 5). For each given density of particles the family of self-similar solu-
tions depends on one parameter. A natural problem is to select among this
family the solution (if any) that would describe the distribution of radii
during the coarsening stage of the aggregate of particles. This selection can-
not be made just in the framework of the pure LSW theory, due to some
recent results about the stability of all the self-similar solutions that have
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been recently obtained in ref. 8 and that I will discuss in detail later. Let
us remark for the moment that in the original article (cf. ref. 5) it was
suggested that one particular self-similar solution of the LSW model should
be the physically relevant one due to the stabilizing effect of collisions or
``encounters'' between particles. As a matter of fact, the LSW model con-
siders the particles as isolated, and only introduces interaction between
particles by means of an ``average'' field. The effect of ``encounters'' between
particles is modelled by means of a collision term of kinetic type that is
derived using some ``ad hoc'' assumptions about the dynamics of collisions
between pairs of particles.

It is important to remark however that, although in principle colli-
sions between particles could be determinant in selecting the ``correct'' solu-
tion among the family of self-similar solutions of the LSW model, there
exist other possible regularizing effects that have not been taken into
account in the paper.(5) Let us denote as =N the volume fraction of a con-
tainer occupied by N particles. This quantity remains constant during the
whole evolution of the system. In order to be able to consider the particles
as isolated, as it is made in the derivation of the LSW model, the condition
=N<<1 is required. However, other considerations restrict the validity of
the LSW to smaller volume fractions. Indeed, the numerical simulations
in ref. 6 show the existence of a transition in the long time behaviour of
particle aggregates for volume fractions of order =Nt1�N 2. The existence of
a natural transition if =Nt1�N 2 has also been observed in a more analytic
way in ref. 9 with the use of homogeneisation arguments. The reason for
the onset of this distinguished limit is the fact that in the quasistatic
approximation the concentration field due to an isolated particle decays far
away at the coulombian rate 1�r2. For volume fractions =N smaller than
1�N 2 the local effects due to each particle can then be neglected. However,
if =N of order 1�N 2 or larger, the combined interaction of the coulombian-
like concentrations described above becomes relevant. Although it seems
that the LSW model can still be derived as a leading approximation in this
case, some effects due to the stochastic fluctuations of the particles could
be quite relevant as will be checked in Section 2. From the mathematical
point of view the limit =Nt1�N 2 arises for reasons analogous to the so-
called Debye�Hu� ckel screening in the theory of electrolites, as has been
pointed out in ref. 6.

It is the goal of this paper to understand the validity of the LSW
theory for small volume concentrations of particles. In order to avoid the
complications due to the Debye�Hu� ckel screening effects discussed above,
it is natural to consider in a first approximation volume fractions satisfying
=N<<1�N 2. On the other hand, as it will be argued later, for volume
fractions that are smaller than 1�N the probability of having encounters
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between particles is negligible if the particles are uniformly distributed. This
clearly indicates that for the volume fractions considered in this paper
(=N<<1�N 2), another regularising mechanism (if any) should be sought-for.

Before continuing the discussion about possible regularising effects for
the LSW it is worth recalling some results that have been recently obtained
in the articles.(7, 8) In these papers, the authors have established the mathe-
matical well-posedness of the LSW model and they have analysed the long
time asymptotics for the solutions of this problem. In particular has been
obtained in refs. 7 and 8 that the long time asymptotics for the solutions
of the LSW system depends very strongly on the asymptotic distribution of
radii near the maximum radius (this analysis has been restricted to com-
pactly supported distributions of radii). In particular, if the initial distribu-
tion of radii behaves as a power law, analogous to the distribution of a self-
similar solution, the long time asymptotics of the corresponding solution of
the LSW theory turns out to be such a self-similar solution. Non selfsimilar
type of behaviours are also obtained.

As was stated before, these results show that finding a selection proce-
dure for the physically relevant solution of the LSW theory using only the
pure LSW system of equations and stability considerations is hopeless. In
this paper, two different possible effects that could regularise the LSW
model will be considered. First, we notice that the distribution density of
particles is not a continuous one for a physical set of particles. Indeed, if
the number of particles is finite, although large, the distribution function is
really a stair-like function. We can assume that an initial distribution of
particles with a given probability is assigned. In the long run, and with
probability one, only one particle survives as it follows from the fact that
particles with radius below the average disappear and particles with radius
larger than the average growth (see ref. 8 for a more analytical description
of this process). However, for ranges of times for which the number of
particles is small, it does not make sense to use a continuum theory as LSW
in order to describe the distribution of particles. A more natural question
would be to establish if there is some intermediate range of times for which
a large number of particles still exists, and which particular dynamics,
among the many that are possible in the LSW model, takes place. We can
establish this problem in a more precise form. If we take an initial distribu-
tion of probability, and assign the radii of N particles independently using
such a distribution function, we obtain a distribution of radii for the finite
set of particles. This last converges to the original one due to the classical
law of the large numbers. Nevertheless, some brownian-like fluctuations
appear in the distribution of radii for the finite set of particles. Since the
long time asymptotics of the LSW model depend very strongly on the distri-
bution of radii near the maximum radii, the possibility of an intermediate
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asymptotics for the discrete model that could be described by the classical
LSW model cannot be ruled out immediately.

On the other hand, other possible regularisation mechanism is the fact
that the mean field of concentration that is used in the derivation of the
LSW theory is not the exact field that drives the dynamics of the particles.
As a matter of fact, the mean field has to be corrected with an additional
term that describes the fluctuations in the positions of the particles. Fluc-
tuation terms of this type are relevant in some particular physical applica-
tions, for instance in stellar dynamics, where the corresponding fields have
also a decay rate 1�r2 (cf. the extensive review(3)). In this particular case,
these fluctuations due to the position would have the effect of introducing
some degree of indetermination in the rate of change of the radius for par-
ticles with the same radii, something that usually has a stabilising effect in
statistical mechanics problems.

The main goal of this paper is to check if the two effects mentioned
above (fluctuations in the distribution of radii, and stochastic fluctuations
in the rates of change for the radii due to the stochasticity on the positions
of the particles) could have a role in selecting a particular solution of the
LSW theory. The answer will be a negative one. More precisely, let us
restrict our analysis to a range of times for which the remaining number of
particles is still large enough as to allow a continuous description of the
distribution of particles as it is made in the LSW theory. Assume also that
the distribution of radii is chosen uniform in space, and according to any
of the selfsimilar solutions of the LSW theory. Then, if the volume fraction
=N satisfies =N<<1�N 2, neither of the stochastic terms described above is
strong enough to modify in a sensible way the selfsimilar asymptotic
behaviour.

The result mentioned above is in a clear contrast with the situation
that takes place if we introduce in the model the effects due to the fluctua-
tions on the size of the particles due to kinetic effects. In the articles, (11, 13)

the LSW model has been considered as a limit case of the Becker�Do� ring
system of equations. This last system is an infinite set of equations that
describes the concentration of clusters of a given size. Such clusters can
change their size by means of the addition or substraction of monomers.
Formally, for large clusters, the Becker�Do� ring system approaches to the
LSW model. However, the Becker�Do� ring model takes into account the
existence of fluctuations of large clusters, and this effect regularises the
LSW theory, as has been shown in ref. 13, and thus provides a way to pick
the unique solution of the LSW model that has been selected in the original
paper.5 In some sense, the selection mechanism has some analogies with
the selection of the solutions on hyperbolic equations by means of the zero
viscosity limit, but the technicalities are very different in both cases.
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The results described above seem to indicate that, at least for not very
large volume fractions of particles, fluctuations are essential in making the
selection of the correct solution of the LSW theory, in those situations
where this distribution is actually observed.

The plan of this paper is the following. In Section 2 a correction of the
LSW model that includes (to the leading order) the effect of the fluctua-
tions on the positions of the particles is derived. In that Section will be also
estimated the order of magnitude of the collisions between particles. This
turns out to be small for the considered volume fractions. It will be also
seen in this Section that drifting and deformations of the particles are negli-
gible to the leading order. In Section 3 a number of statistical properties of
the initial distribution of particles will be discussed. Section 4 contains
some probabilistic estimates on the corrective terms due to that fluctua-
tions. In Section 5 there is a proof of the fact that neither of the stochastic
effects described significantly modifies a selfsimilar behaviour as far as the
number of remaining particles is larger than log(N ). For longer times, the
effect of stochastic fluctuations should become important and a description
of the distribution of particles by a continuous density should become
meaningless. I have not attempted to describe this range of times in detail.
Notice, however that the remaining set of particles during this stage is
much smaller than the original one. There are several analogies between
some of the main ideas in Section 5 as those in ref. 8, although from a
technical point of view both approaches are rather different. Finally in
Section 6 some conclusions and general discussion on the obtained results
is provided.

2. COMPUTING THE FLUCTUATIONS OF THE RATE OF
GROWTH

2.1. The LSW Model with Fluctuations

In this section we describe in detail the problem that we analyse in the
paper and we make some preliminary approximations that allow us to
write it in a more convenient way.

In the derivation of the LSW model it is assumed that a set of N
particles evolves due to a diffusion field. Let us suppose that the particles
are included in a cubic domain 0=(0, L)3. In the usual LSW model it is
also supposed that the diffusion field c(x, t) is quasi stationary, and then
solves the Laplace equation. Let us denote as Di (t) i=1,..., N the different
particles. On the surface of each particle the Gibbs�Thomson law holds.
Under these assumptions the growth of the particles is described by the
following problem:
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2c=0 in 0>\ .
N

i=1

D i (t)+ (2.1)

c=&_H in .
N

i=1

�Di (t) (2.2)

Vn=&D
�c
�n

in .
N

i=1

�Di (t) (2.3)

The coefficients _>0 and D>0 in (2.2) and (2.3) are respectively the
surface tension and the diffusion coefficient. We denote by H in (2.2) the
mean curvature of each domain �Di (t). Finally Vn in (2.3) stands by normal
velocity of growth. Problem (2.1)�(2.3) has to be solved for some suitable
initial distribution of initial domains, with periodic boundary conditions at
the boundaries of the region 0, in order to avoid the influence of the walls
in the dynamics of the problem.

From now on we will denote as =N the fraction of volume occupied by
the particles. As stated in the introduction, we will assume in the whole
paper that

=NN 2<<1 (2.4)

By convenience we adimensionalise the problem as follows:

8=
rN

_
c (2.5)

t$=
D_

(rN)3 t (2.6)

rN=\ |0| =N

N +
1�3

(2.7)

In this new set of variables, the model (2.1)�(2.3) becomes:

28=0 in 0>\ .
N

i=1

Di (t)+ (2.8)

8=&rNH in .
N

i=1

�Di (t) (2.9)

Vn=&(rN)2 �8
�n

in .
N

i=1

�Di (t) (2.10)
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The main advantage of writing (2.1)�(2.3) in the form (2.8)�(2.10) is
that 8 becomes of order one and, on the other hand, if we measure the
sizes of the domains Di (t) using the natural length scale rN , the variations
of the domains is of the order of themselves if the time t$ varies by quan-
tities of order one. By notational simplicity, we will drop from now one the
tilda from t$.

We will assume that the particles are spherical at the initial time. It
will be checked in the derivation of the model that, under the assumption
=NN 2<<1, the particles remain spherical to the leading order during their
evolution for long enough times, and we will make this hypothesis in the
following. We shall denote the radius of the domain Di (t) as Ri , and in
adimensional units we will write !i=Ri �rN .

If we assume that the particles are uniformly distributed the average
distance between them would be of order (1�N )1�3. Since, by assumption
=N<<1, it then follows that rN<<(1�N )1�3. It then turns out that most of
the particles are quite separated from the others. We can make more
precise this statement as follows. Due to the conservation of volume of the
particle, the maximum volume that can have a particle during its evolution
is =N . Let us take a spherical volume =N around each particle. The probability
of having an empty intersection between these volumes is equal to:

P0= `
N&1

l=1
\1&

l=N

|0| + (2.11)

where we have assumed that the particles are distributed independently and
uniformly in the domain 0. Since =NN 2<<1 it then easily follows that P0

can be approximated as:

P0rexp \&
=NN 2

2 |0| + (2.12)

Using the fact that =NN 2<<1 we deduce that the probability of inter-
section between the different domains is of order:

1&P0r
=NN 2

2 |0|
<<1 (2.13)

We can then assume that the different particles do not intersect during
their evolution, except perhaps for some initial configurations with small
probability in the limit of large numbers of particles. Actually, (2.13) is a
rather rough estimate for the probability of intersection between domains
during their evolution, since we have assumed that all the domains fill the
maximum possible volume from the very beginning, and the vanishing of
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particles in time has not been taken into account. On the other hand,
notice that if instead of using the total volume of the particles =N we take
into account the volume for particle =N �N, we deduce that the probability
of having intersections in the initial distribution of particles is small if
=N<<1�N, as was indicated in the Introduction. In any case, we can safely
assume that under the assumption (2.4), and supposing a uniform distribu-
tion of the particles, no collisions take place. This excludes the type of
regularizing mechanism suggested in ref. 5 for these volume fractions (at
least if initially, the particles are randomly distributed).

Since the domains Di (t) are spherical and, as indicated above, they are
very far away from the others, we can approximate the field 8 near the i th
particle as:

8r
Ai

|x&xi |
&B (2.14)

for some suitable constants Ai , B. The constant B represents some kind of
average field, and the term Ai �|x&xi | provides some boundary layer varia-
tion of the field due to the presence of the particle. The constants Ai can
be determined by means of the boundary condition (2.9). It then follows
that:

8r&
rN(1&B!i )

|x&xi |
&B (2.15)

where we have used the fact that H=1�Ri .
Taking into account the boundary condition (2.10) as well as the

approximation (2.15), we derive the following approximation for the rate of
change of the radius of each particle:

d!i

dt
=&

(1&B! i )
(!i )

2 (2.16)

In order to determine the time dependence of B, we use the fact
that the system (2.8)�(2.10) preserves the total volume of the particles
�N

i=1 |D i (t)|, as can be easily checked by taking the derivative of this
quantity, and then using (2.8), (2.10). In the particular case of spherical
domains, it then follows that:

:
N

i=1

(! i )
3=+0 (2.17)
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where +0 is a fixed constant. Combining (2.16) and (2.17) we readily obtain
that:

B(t)=
�N

i=1 /(!i )
�N

i=1 !i
(2.18)

where from now on we denote /(s)=1 if s>0 and /(0)=0.
The model (2.16), (2.17) is the classical LSW model. In the limit of a

very large number of particles, a continuity equation in the space of radii
for the density of particles with a given radius f (!, t) can be derived. More
precisely, if the fraction of remaining particles with a radius in the interval
(!, !+d!) is written as dN(t)�N= f (!, t) d!, the following continuity equa-
tion can be easily computed taking into account (2.16):

�f
�t

+
�

�! \\&
1
!2+

B(t)
! + f +=0 (2.19)

where in this continuous limit (2.17) becomes:

|
�

0
f (!, t)(!)3 d!=

+0

N
(2.20)

Recently, model (2.19) and (2.20) has been extensively studied (cf.
refs. 7 and 8), It has been shown in these references that, for compactly
supported densities, the long time dynamics of this model depends in a very
sensitive way on the asymptotics of the initial data f (!, 0) near the maxi-
mum radius. The goal of this paper is to derive a model more regular that
the LSW one (2.16), (2.17), that takes into account the fluctuations of the
velocities of the particles. The main consequence of this analysis will be to
introduce some additional, stochastic terms in (2.16).

To be more precise, let us argue as follows. Suppose that the initial
distribution of radii and positions for the particles is given according to the
probability distribution:

d&(!, x)= `
N

l=1
_ f (!l , 0) d!l dxl

|0| & (2.21)

where by assumption f (!, 0) is a nonnegative probability measure.
Then the domains begin to evolve according to (2.8)�(2.10). Notice

that in general the domains lose the radial shape for t>0. However, it will
be checked later that, except for a set of distributions with small probabil-
ity the domains remain almost spherical to the lowest order.

As a next step, we compute the leading order correction due to
the fluctuations on the positions of the particles. The driving force that
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produces the change in the radii of the particles can be decomposed in an
average field plus a smaller, but rapidly fluctuating field. This last field
varies very quickly in time, due to the vanishing of particles that are
distributed in space in a stochastic manner. Let us write the evolution of
the i th radius as:

d!i

dt
+\ 1

(! i )
2&

B(t)
(!i )+=_i (t) (2.22)

Our main interest in the next lines is to compute in detail the term _i (t).
To this end, we argue as follows. Formula (2.15) suggests the following
global approximation for 8:

8r&B+BrN :
N

i=1

!i

|x&xi |
&rN :

N

i=1

/(!i )
|x&xi |

(2.23)

We remark, however, that the right hand side of (2.23) does not
satisfies the periodic boundary conditions that we are assuming in our
problem. In order to avoid this difficulty, we introduce a Green's function
K(x, y) that is the unique function satisfying the following problem:

&2x K(x, y)=4?$(x& y)&
4?
|0|

, for x{ y (2.24)

K(x, y)t
1

|x& y|
+O( |x& y|2), as x � y (2.25)

and with periodic boundary conditions at the boundary of the domain 0.
It is not hard to see that there exists a function K(x, y) satisfying (2.24)
and (2.25). Indeed, due to the periodic boundary conditions we need to
impose a compatibility condition on the right hand side of (2.24), namely,
the orthogonality to the constants, that explains the presence of the term
4?�|0|. On the other hand, solutions of (2.24) are not unique, since an
arbitrary constant can be added. Such a constant is prescribed by means of
the asymptotics (2.25) where not constant terms appear as x � y. Noticed
that the first corrective term in (2.25) is not linear but quadratic due to the
symmetry of the problem satisfied by K(x, y).

Instead of using (2.23), we shall approximate 8 as:

8r&B+BrN :
N

i=1

!i K(x, xi )&rN :
N

i=1

/(!i ) K(x, xi )#W (2.26)
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Formula (2.26) provides a good approximation of 8 as far as the
effects of the sums there remain small far away from the particles. At a first
glance is not obvious why the second term of (2.26) should be a good
approximation of the function 8 that is harmonic, since several of the
terms in the definition of W& are not harmonic (cf (2.24)). However, if we
use the approximation (2.18) it immediately follows that 8 is solves
Laplace's equation away from the points xi , i=1,..., N.

It is interesting to observe, that under the hypothesis rNN=(=N N 2)1�3

<<1 the main contribution to the field near the particle xl is given by
K(x, xl). Indeed, we can estimate, for instance, the term rN �N

i=1 i{l K(x, xi )
that can be approximated to the leading order as rNN |0| � K(x, y) dy. The
contribution of this term is small compared with B and rNK(x, xl) if
rNN=(=NN 2)1�3<<1. If this assumption falls, we would need to introduce
additional terms due to the well known Debye�Hu� ckel screening. We will
not consider that range of parameters in this paper.

Taking into account (2.26), it is natural to introduce a corrective term
V by means of the formula:

8=W+NrNV (2.27)

Using (2.8), (2.9) as well as (2.26) it readily follows that V solves the
following problem:

2V=0 in 0>\ .
N

i=1, /(!i ){0

Di (t)+ (2.28)

V=B \ 1
rN

&
!i

|x&xi |++
1
N \ 1

|x&xi |
&H+

+B \ ! i

|x&x i |
&! iK(x, x i )++

1
N \K(x, xi )&

1
|x&xi |+

+
1
N \ :

N

l=1, l{i

/(!l) K(x, xl)&B :
N

l=1, l{i

!lK(x, xl)+ at �Di (t)

(2.29)

where the boundary condition (2.29) is imposed only at those values of i
where /(!i ){0. The first two terms at the right hand side of (2.29) are
identically zero for radial particles. We will check later that the leading
correction to (2.16) is radial, that means that those terms can be neglected
to the first order. On the other hand, the third and fourth order terms on
the right of (2.29) can be easily estimated using (2.25). This correction
turns out to be of order O((rN)2), which is very small compared with the
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last two terms of (2.29) that give contributions of order one. Summarizing,
we can then replace (2.29) by:

V=
1
N \ :

N

l=1, l{i

/(!l) K(x, xl)&B :
N

l=1, l{i

!lK(x, xl)+ at �Di (t)

(2.30)

Taking into account that for most of the distributions of particles
|xi&xl |>>rN , we can rewrite (2.30) to the leading order as:

V=
1
N

:
N

l=1, l{i

(/(!l)&B!l) K(x i , xl)#k i at �D i (t) (2.31)

Equation (2.31) shows that, to the lowest order, function V takes a
constant value on each particle.

Using (2.10) we obtain the following expression for the normal
velocity at the surface of each particle:

Vn =&(rN)2 �W
�n

&(rN)3 N
�V
�n

=&(rN)3 :
N

l=1

(B!l&/(!l)) {xK(x, xl) } n&(rN)3 N
�V
�n

, at �Di (t)

(2.32)

To proceed further, we split the contribution due to �W��n on (2.32)
in a part due to the i th particle and a remainder:

&(rN)2 �W
�n

=(rN)3 (B!i&/(!i ))
(x&xi )
|x&xi |

3 } n

+(rN)3 (B! i&/(!i )) \\{xK(x, x i )&
(x&x i )
|x&xi |

3+ } n+
_(rN)3 :

N

l=1, l{i

(B!l&/(!l)) {x K(x, xl) } n (2.33)

The first term on the right hand side of (2.33) is the leading term of
the concentration field and the only one that contributes in the classical
LSW theory. This term is radial on radial particles, and its nonradial con-
tribution is proportional to the lack of radiality of the domains Di (t). This
means that this term cannot be responsible for the deviation of radial
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behaviour of the particles. On the other hand, the last term on the right
hand side of (2.33) can be approximated as:

(rN)3 |
�Di (t) _ :

N

l=1, l{i

(B!l&/(!l)) {xK(x, xl) } n& dSx

+O((rN)4 N ), at �Di (t) (2.34)

Estimate (2.34) can be derived as follows. We decompose the last term
on the right hand side of (2.33) in the average value in the particle centred
at xi plus a remainder term. The average value is the integral term in
(2.34). Concerning the remainder, we can estimate it computing the highest
order correction in Taylor's expansion for {xK(x, xl). Assuming that on
average, particles remain at distances of order one, we would obtain that
the second derivatives {2

xK(x, xl) would be roughly of order one, and for
radii of order rN the estimate would follow.

Using the classical Gauss theorem we can rewrite the first term of
(2.34) as:

&(rN)3 |
Di (t) _ :

N

l=1, l{i

(B!l&/(!l)) K(x, xl)& dx, i{l (2.35)

A rather rough estimate of this term can be easily derived as follows. We
have shown that in most configurations all the particles remain at least at
distances of order (=N)1�3

rrN . We can then estimate (2.35) as O((rN)5 N ).
On the other hand, the possibly nonradial corrective term O((rN)4 N )

in (2.34) is completely negligible if =NN 2<<1.
On the other hand, using (2.25) the second term of the right hand side

of (2.33) can be shown to be of order O((rN)4), hence negligible.
It is interesting to remark that the estimates above hold also if the

radius of the particles !i increase, due to the presence of the term B that
as will be seen later will be approximately like in (2.18). The consequence
of this will the that terms like B! i would remain bounded by constants of
order one.

Finally, we notice that in the last term in (2.32) we can make a similar
approximation by the monopolar contribution, due to the fact that the
boundary conditions near each particle are radial to the leading order. We
then write:

&(rN)3 N
�V
�n

r &
(rN)3 N
|�D i (t)| |�Di (t)

�V
�n

dS (2.36)

Summarizing, to the leading order we have obtained that the correc-
tions to the normal velocity at the surface of each particle are radial. Using
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(2.32), (2.33), and (2.36) we then obtain the following equation for the
radius of each particle:

d!i

dt
=&

(1&B(t) !i )
(!i )

2 &|0| =N'i (2.37)

where:

'i=
1

|�Di (t)| |�Di (t)

�V
�n

dS (2.38)

and where B(t) has to be determined using (2.17). The function V solves
(2.28) with boundary condition (2.31). If we formally set =N=0 in (2.38),
we would recover the usual LSW model. Notice that determining 'i we
have to take into account the probabilistic character of the positions of
the particles. Comparing (2.38) and (2.22) it readily follows that _i (t)=
&|0| =N'i (t). Our next goal is to simplify the form of _ i (t) by taking into
account that the number of particles N is very large.

It would be interesting to understand if the estimates that have been
made above are independent on the evolution of the system for t>0. More
precisely, it has been assumed that, initially, the positions of the particles,
as well as the distribution of radii are independent variables. However,
during the evolution of the system, correlations could develop and this fact
could affect seriously the evolution of the distribution of radii. Some of
the previous estimates are independent of the distribution of particles (for
instance the first three terms on the right hand side of (2.29)). Other
estimates use some kind of averaging in the distribution of the particles
(cf. for instance the last term in (2.29) or (2.35)). However, it is important
to point out that in these last cases, we are deriving upper bounds on the
size of terms involved. In particular, this implies that after the vanishing of
several particles, the estimates that have been derived for the initial dis-
tribution of particles could only improve. Some effects, for instance drifting
of particles or higher order corrections, have been neglected because they
are produced by terms smaller than the ones that have been kept. It would
be unlikely that these higher order corrections could change drastically the
dynamics of the problem, although a more rigorous and detailed analysis
of these higher order terms could be convenient.

2.2. Computing the Corrective Term _i (t)

We remark that the function 'i depends of the coordinates xl , !l

through (2.28), (2.31), and (2.38). The radii !l are functions of t, but the
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positions xl remain constant in time according to the approximations
made in the derivation of the model. If dipolar terms were taken into
account in the computation of Vn some slow drifting of the particles would
take place. However, within the range of accuracy used to obtain (2.37), it
is natural to ignore translations of particles. We will assume henceforth
that the coordinates xl and !l are independent random variables uniformly
distributed in the domain 0 according to the probability distribution
(2.21).

We recall that the distribution of radii evolves according to the system
(2.37). Our main goal in this Section is to compute a simpler approxima-
tion of the random variables 'i . To this end, we need as a preliminary step
an approximation of the solutions of the problem (2.28), (2.31).

Since for most of the configurations of the particles the distance
between then is much larger than rN , it is natural to assume as in (2.26)
the following approximation for V:

Vr :
N

l=1

[:l K(x, xl)+Bl] (2.39)

where the constants :l , ;l have to be determined using the boundary
conditions (2.31). Near the i th particle the leading term in (2.39) is
:i K(x, xi )+;i , and using (2.25) it follows that this term can be approxi-
mated as (:i �|xi&xl | )+;i . Let us assume that this term agrees with the
constant ki in (2.31) at the boundary. It then follows that :i=(ki&;i ) rN!i .
We can then rewrite the boundary condition (2.31) to the leading order as
the following system of equations for the coefficients ;l :

:
N

l=1, l{i

[(kl&;l) rN !l K(xi , xl)+;l]

+(ki&;i ) O((rN)2)=0, i=1,..., N (2.40)

where as usual in this paper only monopolar terms have been kept, and we
have used again (2.25).

In the limit case =NN 2<<1, the terms with the form (;lrN!l)�|x i&xl |
can be neglected, as well as the contribution due to the terms
(ki&;i ) O((rN)2) that is even smaller. To check this, notice that under this
assumption (2.40) becomes:

:
N

l=1, l{i

;l=& :
N

l=1, l{i

klrN!l

|xi&xl |
#_i , i=1,..., N (2.41)
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The solution of (2.41) can be written in the form:

;i=S&_i , i=1,..., N (2.42)

where:

S# :
N

l=1

;l=
1

(N&1)
:
N

l=1

_l (2.43)

The contribution of the terms of the form (;lrN !l)�|x i&xl | to the
right hand side of (2.41) can be estimated as follows:

} :
N

l=1, l{i _
;lrN !l

|xi&xl |&}�C |_| NrN |
0

dy
|x& y|

(2.44)

where |_| denotes the order of magnitude of the coefficients _i in (2.41).
Under our assumptions on =N we have NrN<<1, whence the contribution
due to this corrective term would be negligible. The last term on the left
hand side of (2.40) is even smaller. It is not hard to make this argument
rigorous by using a perturbative series.

In any case, we can suppose to the leading order that the coefficients
;i are given by (2.42), (2.43). Using then (2.39), as well as the previously
derived approximation for the coefficients :i , we obtain the following value
for V:

Vr :
N

l=1

[(kl&;l) rN !lK(x, xl)+;l] (2.45)

where the ;l are as in (2.42), (2.43). Taking into account (2.38) we arrive
at the following approximation for 'i :

'ir
;i&ki

rN!i
, i=1,..., N (2.46)

We can obtain a further simplification of (2.46). Let us denote as |k|
the order of magnitude of the coefficients ki . Taking into account (2.41),
and arguing as in the derivation of (2.44), we can derive the following
estimate for |_|:

|_|�CNrN |k|

and from (2.42) and (2.43) we then deduce that:

|;i |�CNrN |k| (2.47)
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The estimate (2.47) implies that, in the limit =NN 2<<1, the contribu-
tion due to the term ;i is negligible compared with ki . This provides the
approximation:

'ir&
k i

!i
, i=1,..., N (2.48)

that will be used from now on. The coefficients ki are the ones given in
(2.31). Summarizing, to the leading order (2.37) can then be rewritten as:

d!i

dt
=&

(1&B(t) !i )
(! i )

2 +
|0|
! i \

=N

rN + ki , i=1,..., N (2.49)

In view of the analysis above, we have reduced our problem to the
study of the random variables ki that have a more explicit expression than
the 'i 's (cf. (2.31)). As a next step we intend to estimate the terms ki .
Notice that the functions ki depend on t, since their value depend on the
positions of the particles xl , and some of them disappear as time runs. In
principle this could generate some ``noisy'' variation of ki (t), that could be
relevant near the region of largest maxima. One of the main goals of this
paper is to show that this random variation of ki (t) is not strong enough
to stabilise the distribution of particles to the LSW solution.

By assumption, a particle that disappears in our model cannot be
generated again. This implies that N(t)=�N

m=1 /(!m(t)) is monotonically
decreasing. Notice that we can write:

ki (t)=
1
N

:
N

m=1 \/(!m(t))&
N(t) !m(t)
�N

s=1 !s(t)+ Mi, m , i=1,..., N (2.50)

where by notational simplicity, we define:

Ml, m =K(xl , xm), l{m (2.51)

Ml, m=0, l=m (2.52)

By assumption !m(t)=0 after extinction of the m-particle takes place.
Combining (2.49) with the volume conservation (2.17) we readily obtain:

B(t)=
N(t)&|0| (=N �rN) �N

i=1 ki (t) !i (t)
�N

i=1 !i (t)
(2.53)
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Plugging (2.53) into (2.49) and using also (2.50) we arrive at:

d!i

dt
=&

1
(!i )

2+
N(t)

�N
x=1 !s(t)

1
!i

+
N(t)

�N
s=1 !s(t)

* i (t)
!i

(2.54)

where:

*i (t)#
|0| =N

rNN(t)
:
N

m=1

1
N

:
N

l=1
_\/(!m(t))&

N(t) !m(t)
�N

s=1 !s(t)+ (Mi, m&Ml, m)& !l(t)

(2.55)

The model that will be considered in this paper is (2.54) and (2.55)
with a random distribution of initial radii whose choice will be described
in detail in next Section. On the other hand the coefficients Mi, m are ran-
dom variables defined by means of (2.51), (2.52). Notice that the volume
conservation (2.17) immediately holds by construction. In Section 4 some
estimates will be derived showing that the functions *i (t) are simulta-
neously small for all the particles, with a probability that approaches one
if the number of particles approaches infinity.

Corrective terms for the LSW dynamics closely related to (2.55) have
been recently obtained in ref. 1, where the problem of computing higher
order corrections to the LSW mean field theory has been addressed.
Actually, the authors of ref. 1 have computed also higher order terms that
are responsible for the drifting of particles, and they have also estimated
the effect of the corrective terms in particular configurations of particles.

3. STOCHASTIC PROPERTIES OF THE INITIAL DISTRIBUTION
OF RADII

We now describe the initial distribution of radii that will be used to
solve the model (2.54), (2.55). To this end it is more convenient to work
with distributions of probability instead than with probability densities.
Given any continuous increasing function F satisfying F(0)=0, F(�)=1,
we will assign the initial density of radii !s(0), s=1,..., N as a set of inde-
pendent random variables with a probability:

P(!s(0)�!)=F(!) (3.1)

The continuity assumption on F is not actually necessary on mathemat-
ical grounds, but it will be needed for our purposes here. By convenience,
we will assume also that 1&F is compactly supported.
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Before stating more precise results, it is instructive to get some
heuristic understanding on the distribution function associated to the
discrete distribution of particles. To this end, we define the discrete dis-
tribution function as:

FN(!)=
1
N

:
N

i=1

/(!&!i (0)) (3.2)

where, as indicated in Section 2, /(s)=1 if s>0 and /(0)=0.
It is trivially seen that FN(!) is just the number of particles in the

distribution !s(0), s=1,..., N with a radius smaller or equal to !. Using the
classical large numbers law, as well as the continuity assumption on F, it
is not hard to check that with probability one:

lim
N � �

FN(!)=F(!) (3.3)

uniformly on ! (cf. for instance ref. 4). We can obtain a better intuition on
the effect of the fluctuations computing the higher order correction in the
limit (3.3). Let us write:

FN(!)=F(!)+
1

- N
n(!) (3.4)

where by definition:

n(!)=
1

- N
:
N

i=1

(/(!&!i )&(/(!&!i )) ) (3.5)

and where from now on ( } ) denotes average with respect to the measure
of probability:

d&(!s(0), s=1,..., N )= `
N

s=1

dF(!s(0)) (3.6)

The function n(!) is a stochastic process that can be analysed in the
limit N � � by standard methods. More precisely, let us fix a finite set of
different real numbers !� k , k=0,..., L. The characteristic function of the
stochastic variables n(!� 1), n(!� 2),..., n(!� L) can be computed in the limit
N � � as follows:
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lim
N � � �exp \i :

L

l=1

n(!� l) %l+�
= lim

N � � �`
N

i=1
\1&

1
2N \ :

L

l=1

(/(!� l&!i )&(/(!� l&!i )) ) %l+
2

+�
=exp \&

1
2 �\ :

L

l=1

(/(!� l&!1)&(/(!� l&!1)) ) %l+
2

�+
=exp \&

1
2

:
L

l=1

:
L

k=1

(min(F(!� l), F(!� k))&F(!� l) } F(!� k)) %l%k+
#J(%) (3.7)

The characteristic function J(%) in (3.7) is well known, and can be
easily written in terms of the stochastic process known as brownian bridge.
Let us denote as w(t) the classical brownian motion, or Wiener process.
The brownian bridge, defined for t # [0, 1] is the stochastic process b(t)=
w(t)&tw(1). Its characteristic function is given by:

�exp \i :
N

l=1

(w(tl)&tl w(1)) %l+�
=exp \& 1

2 _ :
N

l=1

:
N

j=1

min[tl , tj ] %l %j&\ :
N

l=1

tl%l+
2

&+ (3.8)

as can be immediately checked using the characteristic function for the
brownian motion (cf. for instance ref. 10). Comparing (3.7) and (3.8), we
then immediately obtain the following formula for n(t) in (3.5):

n(t)=b(F(!)) (3.9)

where b( } ) is the brownian bridge. As a matter of fact, the analysis made
above is a rather classical one in the theory of empirical statistical distribu-
tions. A more detailed and rigorous analysis of the derivation of (3.9) could
be found in ref. 12.

Summarizing, in the limit of large numbers of particles, FN(!) in (3.4)
can be approximated by using (3.9). There is an aspect of this approxima-
tion, however that could be a bit misleading and is worth clarifying. By
definition the function FN(!) in (3.4) is monotonically increasing. If we just
use the approximation (3.9) in a naive way in (3.4), it would then follow
that {+(b({)�- N ) would be an increasing function, whence in particular,
using the symmetry properties associated to the brownian motion, it would
follow that b({) would be Lipschitz continuous at any point, but it is well

76 Vela� zquez



known that the paths associated to the brownian motion are not differen-
tiable anywhere point. The explanation of this apparent paradox is just
that the Lipschitz constant that would be obtained for b({) grows as - N
as N � �. It is well known that the paths associated to the brownian
motion behave locally, near each point {={0 as ({&{0)1�2, with some
logarithmic corrections that we ignore for the moment. On the other hand,
notice that the increments on {&{0 take place in discrete amounts of order
1�N. In particular, the computations in (3.7) are not admissible for such
small variations of {. In another way, the approximation (3.9) is valid only
for distances on { larger than 1�N. The variations that b({) would suffer in
such distances are of order - 1�N , a result that agrees with the Lipschitz
constant previously computed. If one tries to compute variations of FN(!)
at distances of order 1�N the approximation (3.9) is not valid anymore, and
the discrete character of function FN(!) enters into the problem. However,
this is not a serious difficulty in our approach, since we are interested in
continuum limits of particles, whence we will always consider increments
on { much larger than 1�N.

We now proceed to obtain some precise estimates on the fluctuations
on the number of particles that takes place if we examine ``macroscopic
scales'' in the space of radii. To this end, for each N let us introduce a number
RN satisfying:

log(N )<<RN<<N (3.10)

Our goal is to decompose the space of radii ! in a set of intervals in
such a way that the expected number of particles in each subinterval is RN .
The choice (3.10) would ensure that the number of particles on each sub-
interval allows to consider them as a ``macroscopic'' ensemble. Let us
suppose that function F(!) is supported in the interval [0, !� 0]. We then
define a sequence of numbers !� k by means of the formula:

1&F(!� k)=
RN

N
k (3.11)

Notice that in this form the interval [0, !� 0] is splitted in a family of
intervals whose interiors do not intersect, namely:

[0, !� 0]= .
MN

k=1

[!� k , !� k&1] (3.12)

where MN=N�RN . By convenience we will assume, without great loss of
generality, that MN is an integer number.
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By assumption the values of the initial distribution of radii are
assigned according to the probability distribution (3.6). We want to deter-
mine the number of initial radii that fall in each subinterval [!� k , !� k&1].
Actually such a number is given by the stochastic variable:

Yk# :
N

j=1

/[!� k , !� k&1](!j (0)) (3.13)

where /[!� k , !� k&1] denotes the characteristic function of the corresponding
subinterval. Using (3.6), (3.11), (3.13) it readily follows that the average
number of particles in each subinterval is:

(Yk) =RN (3.14)

We then have that the average number of particles for each subinterval
is RN . In particular, this implies that in a ``coarse-grained'' or ``macro-
scopic'' scale the discrete distribution FN(!) defined in (3.2) is in average
rather close to F(!). Our goal is to show that under suitable assumptions,
FN(!) is close to F(!) in a pointwise sense. To this end we show the follow-
ing result:

Proposition 3.1. Let us assume that (3.10) holds. There exists
1>0 large enough, independent on N, such that the following inequality
is satisfied in a set whose probability approaches to one as N � �:

max
k=1,..., MN

|Yk&RN |�1 - RN log(N ) (3.15)

Proof. The stochastic variable Yk can be considered as the number
of realisations of the outcome to ``fall in the interval [!� k , !� &1]'' among N
independent trials of the stochastic variable !j (0), whose probability dis-
tribution is given by (3.6). Since the probability of falling in the interval
[!� k , !� k&1] is RN �N for every value k, it easily follows that Yk is a multi-
nomial variable, and the probability of achieving the result [Yk=nk ,
k=1,..., MN] where �MN

k=1
nk=N is:

p[Yk=nk , k=1,..., MN]=
(N )!

>MN
k=1

(nk)! \
RN

N +
N

(3.16)

Let us pick A=RN&:, B=RN+;, integer numbers, where:

min[:, ;]=[1 - RN log(N )] (3.17)
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1 is a fixed constant to be precised later, and [ } ] stands by the integer
part of a number. Notice that in order to prove (3.15) it is enough to show
that the probability of the outcome:

S=[A�Yk�B, k=1,..., MN]

approaches to one as N � �, and taking into account (3.16), it follows
that:

p(S)= :
B

n1=A

:
B

n2=A

} } } \ :
MN

k=1

nk=N+ } } } :
B

nMN
=A

(N )!
>MN

k=1
(nk)! \

RN

N +
N

#_N(A, B) \RN

N +
N

(3.18)

We can compute explicitly _N(A, B) by means of a generatrix function.
Indeed, let us define:

G(z; A, B)= :
�

N=0

_N(A, B) zN (3.19)

Using that �MN
k=1

nk=N, as well as the fact that

\ :
B

n=A

zn

(n)!+
MN

+ :
B

n1=A

:
B

n2=A

} } } :
B

nMN
=A

zn1+n2+ } } } nMN

>MN
k=1

(nk)!

it readily follows that G(z; A, B) may be written as:

G(z; A, B)=(N )! \ :
B

n=2

zn

(n)!+
MN

(3.20)

The classical Cauchy formula for the coefficients of a power series
yields:

_N(A, B)=
(N )!
2?i |

#

(�B
n=A (`n�(n)!))MN

(`)N+1 d` (3.21)

where # is any contour surrounding the origin of coordinates. In order
to compute the asymptotics of _N(A, B) as N � � we use the classical
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Laplace method. To this end, notice that by the definition of MN we can
rewrite (3.21) as:

_N(A, B)=
(N )!
2?i |

#
(P(`))MN

d`
`

(3.22)

where:

P(`)= :
B

n=A

`n&RN

(n)!
(3.23)

The function P(`) is convex in the line `>0. Moreover, using the
fact that A<RN<B, it readily follows that there exists a unique value
�̀ N= �̀ N(A, B) such that:

P$( �̀ N)=0 (3.24)

Deforming the contour if needed, we can assume that # in (3.22) is a
circle centered at the origin with radius �̀ N . By (3.10), it follows that
MN>>1 as N � �. If we write `=|`| ei% in (3.23) we can easily obtain
that |P(`)|<P( �̀ N) if %{0, whence the contribution in (3.22) from the
region away from the point `= �̀ N is negligible. Writing (P(`))MN=
exp(MN ln(P(`))), and expanding by means of Taylor's theorem P(`) in
a neighbourhood of the point `= �̀ N , we arrive, after some elementary
computations at:

_N(A, B)=
(N )! (P( �̀ N))MN

2?i �̀ N
(1+o(1)) | �̀ N+iR

exp \MNP"( �̀ N)

2P( �̀ N)
(`& �̀ N)2+ d`

as N � �. Introducing then the change of variables `= �̀ N+
- 2P( �̀ N)�MNP"( �̀ N) i!, we obtain the approximation:

_N(A, B)=
(N )! (P( �̀ N))MN

2 - ? �̀ N
(1+o(1)) � 2P( �̀ N)

MNP"( �̀ N)
as N � � (3.25)

As a next step we proceed to approximate �̀ N in (3.25), taking into
account its very definition in (3.24). Using (3.23), we easily obtain after
some simple manipulations that:

P$(`)= :
B

n=A

`n&RN&1

(n&1)!
&RN :

B

n=A

`n&RN&1

(n)!
`A&RN&1

(A&1)!

&
`B&RN

(B)!
+\1&

RN

` + P(`)
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whence Eq. (3.24) becomes:

P(`)=
1

`&RN _`B&RN+1

(B)!
&

`A&RN

(A&1)!& (3.26)

Let us define a new variable x by means of

`=RN(x+1) (3.27)

Using this new variable, as well as the definition of P(`) in (3.23),
(3.26) can be rewritten as:

x=
H(x)

(�B
n=A (`n�(n)!))

(3.28)

where:

H(x)#_RB(1+x)B+1

(B)!
&

RA&1(1+x)A

(A&1)! & (3.29)

We have already seen that (3.28) has a unique solution in the region
x>&1. As a matter of fact we will show that such a solution lies in a
region where the following both inequalities are satisfied:

(A+x)B+1=1+o(1) (3.30)

(1+x)A=1+o(1) (3.31)

as N � �. If (3.30) and (3.31) hold, then:

:
B

n=A

`n

(n)!
=(1+o(1)) :

B

n=A

(RN)n

(n)!

as N � �. We can then rewrite (3.28) as:

x=
(1+o(1))

�B
n=A ((RN)n�(n)!) _

(RN)B

(B)!
&

(RN)A&1

(A&1)! &
+o(1)

max[(RN)B�(B)!, (RN)A&1�(A&1)!]
�B

n=A ((RN)n�(n)!)

as N � �. Making the change of variables n=RN+l, and using Stirling's
formula as well as the definition of A, B, we arrive after some computations
at:
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x=
(1+o(1))

�;
l=&: (el�(1+l�RN)RN+l+1�2)

__ e ;

(1+;�RN)RN+;+1�2&
e&(:+1)

(1&(:+1)�RN)RN&:&1�2&

+o(1)
_max[(e ;�(1+(;�rN))RN+;+1�2),

(e&(:+1)�(1&((:+1)�RN))RN&:&1�2)]&
�;

l=&: (el�(1+l�RN)RN+l+1�2)
(3.32)

Using now the fact that log(N )<<RN (cf. (3.10)), as well as (3.17) we
can rewrite (3.32) as:

x=
(1+o(1))

�;
l=&: el(RN+l) log(1+l�RN )

_[e ;&(RN+;) log(1+;�RN )&e&(:+1)&(RN&(:+1)) log((1&(:+1)�RN ))]

+o(1)
_max[e ;&(RN+;) log(1+;�RN ),

e&(:+1)&(RN&(:+1)) log((1&(:+1)�RN ))]&
�;

l=&: el&(RN+l) log(1+l�RN ) (3.33)

Taking into account that for |l|�1 |log(N )| there holds l&(RN+l)
_log(1+l�RN)=&(1�2)(l2�RN)+O(l3�(RN)2), it is not hard to approxi-
mate the sums in (3.33) using (3.10). We then eventually arrive at:

x=
(e&(;)2�2RN&e&(:)2�2RN )

- 2?RN

+o(1) max {e&(;)2�2RN

- RN

,
e&(:)2�2RN

- RN
= (3.34)

where we have used (3.17) as well as the well known fact that
��

&� e&z2�2 dZ=- 2?. Formula (3.34) provides an asymptotic expression
for the solution of (3.28). It only remains to check that (3.30) and (3.31)
holds. This immediately follows from the fact that (3.17), (3.34) would
provide an estimate for x of the form

|x|=O \e&((1 )2�2) log(N )

- RN
+

=O \ 1

- RN (N ) (1 )2�2+ as N � � (3.35)
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Notice that (3.30) and (3.31) are satisfied if B |x|<<1. Since B�2RN for
large values of N, it is enough to have - RN �(N ) (1 )2�2<<1, and by (3.10),
we would derive this estimate as N � � if we just choose 1>1. As a matter
of fact, we will need to choose 1 satisfying:

1>- 2 (3.36)

As a final step, we use (3.34) in order to derive an asymptotic formula
for _N(A, B) by means of (3.25). Using (3.23) and (3.27) as well as
Stirling's formula in (3.25) we obtain:

_N(A, B)=(N )N+1�2 e&N \RN

N +
1�2 (�B

n=A [Rn&RN
N (1+x)n&RN ]�(n)!)N�RN

RN

_� P( �̀ N)

P"( �̀ N)
(1+o(1)) (3.37)

Combining (3.35) and (3.36), it easily follows that (1+x)n&RN=
1+o(1) as N � �. Using this fact as well as (3.18), we derive from (3.37):

p(S)=
e&N

- RN
\ :

B

n=A

Rn
N

(n)!+
N�RN

� P( �̀ N)

P"( �̀ N)
(1+o(1)) (3.38)

Finally, notice that by (3.23), (3.35) and (3.36):

P( �̀ N)

P"( �̀ N)
=

�B
n=A Rn

N �(n)!
�B

n=A ((n&RN)(n&RN&1) Rn
N)�(n)!

(1+o(1))

as N � �. Using Stirling's formula again, making the change of variables
n=RN+l, and approximating the sums by integrals as above, we derive
after some elementary computations that:

P( �̀ N)

P"( �̀ N)
=RN(1+o(1))

Plugging this expression into (3.38) we obtain:

p(S)=e&N \ :
B

n=A

Rn
N

(n)!+
N�RN

(1+o(1)) (3.39)
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The limit of the right hand side of (3.39) can be easily computed in the
following way. Let us write:

e&N \ :
B

n=A

Rn
N

(n)!+
N�RN

=\1&e&RN :
A&1

n=0

Rn
N

(n)!
&eRN :

�

n=B+1

Rn
N

(n)!+
N�RN

(3.40)

Notice that:

e&RN :
A&1

n=0

Rn
N

(n)!
�Ce&RN \1+ :

A&1

n=1

Rn
N en

(n)n+1�2+
�C(e&RN+- RN e&:&(RN&:) log(1&:�RN ))

�C - RN e&(1 2�2) log(N )=
C - RN

(N )1 2�2

An estimate of the last series in (3.40) can be obtained in an analogous
way. Using then (3.36), it readily follows that the right hand side of (3.40)
approaches to one, whence:

p(S)=1&o(1)

as N � �. This concludes the proof of Proposition 3.1. K

4. PROBABILISTIC ESTIMATES OF THE SPATIAL
FLUCTUATIONS TERMS

We now proceed to obtain that the stochastic terms *i (t) in (2.55) are
small with probability close to one if the number of particles is large. The
main result of this section is the following:

Proposition 4.1. There exist constants C>0 and L>0 depending
only on 0, such that, if the particles xj are uniformly distributed in 0, then
for any %>0, there holds:

sup
i=1,..., N

|*i (t)|�C(=N)2�3 (N )1�3 (%+1) sup
i=1,..., N

!i (t) (4.1)

with a probability p satisfying:

p�1&
L

(%)2 (4.2)

Notice that choosing % large enough in (4.2), (4.1) states that with a
probability close to one, all the perturbative terms *i (t) can be made
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uniformly small in the precise form indicated in Proposition 4.1. Actually,
under the assumption =N<<1�N 2, (4.1) will be enough for our purposes.

Proof of Proposition 4.1. From the definition of the terms *i (t) in
(2.55), using the nonnegativity of the coefficients Mi, m as well as (2.7) we
easily obtain that:

|*i (t)|�J1+J2 (4.3)

where:

J1 =
C(=N)2�3 (N )1�3

N(t) \ max
m=1,..., N

1
N

:
N

l=1

Ml, m!l(t)+
_\ :

N

m=1
}/(!m(t))&

N(t) !m(t)
�N

s=1 !s(t) }+ (4.4)

and:

J2 =C(=N)2�3 (N )1�3 \ 1
N(t)

:
N

l=1

!l(t)+
_\ max

i=1,..., N

1
N

:
N

m=1

Mi, m } /(!m(t))&
N(t) !m(t)
�N

s=1 !s(t) }+ (4.5)

We begin by estimating J1 . Notice that:

max
m=1,..., N \

1
N

:
N

l=1

Ml, m!l(t)+
� sup

i=1,..., N
!i (t) } max

m=1,..., N \
1
N

:
N

l=1

Ml, m+
= sup

i=1,..., N
!i (t) } max

m=1,..., N \
1
N

:
N

l=1, l{m

K(xl , xm)+ (4.6)

where K(x, y) is as in (2.24) and (2.25).
In order to estimate the term maxm=1,..., N((1�N ) �N

l=1, l{m K(xl , xm)),
we argue as follows. Let us define the function fm(x)=(1�N ) �N

l=1, l{m

K(xl , xm). Notice that

( fm(x))=|
0N

fm(x) dx1 } } } dxN

=
(N&1)

N |
0

K(!, 0) d!#
(N&1) }

N
(4.7)
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On the other hand:

�\ fm(x)&
(N&1) }

N +
2

�=|
0N \ fm(x)&

(N&1) }
N +

2

dx1 } } } dxN

=
(N&1)

N 2 _|0
(K(!, 0))2 d!&\|0

K(!, 0) d!+
2

&
#

(N&1) 5
N 2 (4.8)

Let us write:

Um={x # 0N : fm(x)�(%+1)
(N&1) }

N = (4.9)

Using the classical Chebyshev's inequality, we deduce that the prob-
ability of the complementary of the set Um can be estimated as follows:

p((Um)c)=p {x # 0N : fm(x)>(%+1)
(N&1) }

N =
_p {x # 0N : } fm(x)&

(N&1) }
N }�%

(N&1) }
N =

�
5

%2}2

1
(N&1)

(4.10)

By (4.10), it follows that p(Um)�1&(5�%2}2)(1�(N&1)). We are
interested in estimating the probability of the set �N

m=1 (Um), since one has
there that maxm=1,..., N( fm(x))�(%+1)((N&1) }�N ). Iterating the formula
p(A & B)�p(A)+ p(B)&1, we obtain:

p \ ,
N

m=1

(Um)+�1&
5

%2}2

N
(N&1)

(4.11)

whence:

max
m=1,..., N \

1
N

:
N

l=1, l{m

K(xl , xm)+�C(%+1) (4.12)
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in a set whose probability satisfies (4.2). This inequality allows us to
estimate the right hand side of (4.6). In order to conclude our analysis of
the terms in (4.4), we just remark that:

:
N

m=1
} /(!m(t))&

N(t) !m(t)
�N

s=1 !s(t) }�N(t) (4.13)

since each term in the sum corresponding to a particle with zero radius
gives a zero contribution, and each contribution is bounded by one.

Combining (4.4), (4.6) and (4.13) we obtain:

J1�C(=N)2�3 (N )1�3 (%+1) sup
i=1,..., N

!i (t) (4.14)

in a set satisfying (4.2). We now proceed to estimate J2 . To this end, using
(4.12) we obtain:

\ max
i=1,..., N

1
N

:
N

m=1

Mi, m } /(!m(t))&
N(t) !m(t)
�N

s=1 !s(t) }+
� max

i=1,..., N

1
N

:
N

m=1

M i, m�C(%+1) (4.15)

that holds in a set satisfying (4.2). Notice that we can assume that (4.14)
and (4.15) are satisfied in a common set satisfying (4.2).

On the other hand, we have that:

1
N(t)

:
N

l=1

!l(t)� sup
i=1,..., N

!i (t) (4.16)

Putting together (4.5), (4.15) and (4.16) we obtain the estimate:

J2�C(=N)2�3 (N )1�3 (%+1) sup
i=1,..., N

!i (t) (4.17)

whence (4.1) follows by combining (4.14), (4.17), whence Proposition 4.1
follows. K

5. STOCHASTIC TERMS DO NOT SERIOUSLY MODIFY
SELF-SIMILAR ASYMPTOTICS FOR SMALL
VOLUME FRACTIONS

The goal of this section is to show that the stochastic terms that have
been computed in previous regions do not modify the long term asymptotics
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of the distribution of particles, at least during time scales for which the
number of particles is large enough as to allow a continuous description of
the distribution of radii. Several of the arguments used in this section have
many analogies with the ideas introduced in ref. 8, although from a technical
point view there are developed in a rather different way that looks better
adapted to the analysis of the problem in this paper.

Let us recall the form of the self-similar solutions for classical LSW
model. They are solutions with an average radius with the form:

(!) =a(t+1)1�3 (5.1)

where a # (0, ( 2
3)2�3]. For a in such an interval, the polynomial P(')=

a'3+3a&3' has two roots in the region '>0. Both roots coalesce for
a=( 2

3)2�3. Let us denote them as '1 , '2 , 0<'1<'2 . The self-similar dis-
tribution function for radii satisfying 0<!�(t)1�3�'1 is given by:

F(!, t)=1&
1

(t+1)
G \ !

(t+1)1�3+ , t�0 (5.2)

where:

G(')=C�
('1&'):1

('2&'):2 \'+
3

'1 '2 +
&:3

(5.3)

The constant C� is given by C� =[('2):2�('1):1 ](3�'1'2):3, and the coef-
ficients :i are given by:

:1 =
3('1)3 '2

(3+('1)2 '2)('2&'1)
=

a('1)2

(1&a('1)2)
(5.4)

:2=
3('2)3 '1

(3+('2)2 '1)('2&'1)
(5.5)

:3=
27

9+3('2)2 '1+3('1)2 '2+('1)3 ('2)3 (5.6)

On the other hand F(!, t)=1 if !�(t)1�3�'1 . Notice that F(0, 0)=0.
Elementary arguments show that:

�'1

�a
>0, a # \0, \2

3+
2�3

+ (5.7)
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and also

lim
a � 0+

'1

a
=1 (5.8)

lim
a � ((2�3)2�3)&

'1=\3
2+

1�3

(5.9)

Notice that (5.7) easily implies:

a('1)2<1 (5.10)

Formula (5.2) is valid only of a # (0, ( 2
3)2�3). As a matter of fact, the

LSW theory assumes that the physical distribution of particles is the
corresponding to a=( 2

3)2�3, that will not be described here.
In ref. 8, it has been shown that for any initial distribution of radii that

behaves near the maximum radius as the power law K(!0&!):1, where :1

is as in (5.4) the long time asymptotics of the solution of the LSW model
as t � � is described by the self-similar solution (5.2). In this section we
shall prove that an analogous result can be derived for the model (2.54),
(2.55), taking as initial data, instead of a function with a power law asymp-
totics, a distribution function associated to a finite number of particles as
has been described in Section 3. On the other hand, we will not consider
the asymptotic behaviour as t � �, since for such large times only one par-
ticle remains. Instead we consider the asymptotic of solutions for t large,
but not so long that less than log(N ) particles are left. After such times, the
effect of stochastic fluctuations should become very relevant in the descrip-
tion of the asymptotic of solutions. This last is a most interesting problem,
that however, will not be considered in this paper.

We introduce the following smallness assumption for =N :

(H) If :1 in (5.4) is larger or equal that one we require =N<<1�N 2.
If :1 in (5.4) is less than one, we will assume that =N<<1�N (1�2)(1+3�:1)+$,
where $>0 is a fixed, arbitrarily small number.

The main result that will be proved in this section is the following:

Theorem 5.1. Assume that the hypothesis (H) above holds. Let us
take a distribution of N spherical particles according to the distribution law
(2.21), where f (!, 0) d!=dF(!, 0) and F(!, 0) is as in (5.2), (5.3). Suppose
that the corresponding initial radii are given by the numbers [!i (0)].
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Denote as !i (t) the solution of (2.54), (2.55) with this initial distribution of
radii. Let us define the discrete distribution of particles FN(!, t) as:

FN(!, t)=
1
N

:
N

i=1

/(!&!i (t)) (5.11)

Finally, let us fix TN satisfying:

1<<TN<<
N

log(N )
(5.12)

Then, with probability one, there holds:

lim
N � �

sup
0�t<TN

[t |FN(!, t)&F(!, t)|]=0 (5.13)

Theorem 5.1 means that the discrete set of particles can be described
(with probability close to one) by the self-similar solutions in (5.2), (5.3) if
the number of particles left is larger than log(N ). In particular, this result
implies under the assumption (H) that neither the stochastic deviations of
the mean field theory that have been included in (2.54), (2.55), or the
stochastic fluctuations in the distribution of radii can include any of the
self-similar solutions of the LSW theory. Very likely the asymptotics (5.13)
holds for long times, if as initial distribution is taken a function F(!, 0)
with an asymptotics near the maximum radius analogous to the self-similar
solutions (5.2), (5.3). The proof of this result would probably use a line of
reasoning analogous to the one in ref. 8. However, since the main goal of
this paper is just to estimate the effect of stochastic fluctuations in the
dynamics of the LSW model, this path will not be pursued here.

We also remark that in the course of the proof of Theorem 5.1,
estimates more precise that (5.13) will be derived, in particular near the
region of radii close to the maximum one.

The proof of Theorem 5.1 will be made in several steps. Without loss
of generality, we can relabel the index of the initial distribution of particles
in order to have:

!1(0)>!2(0)> } } } >!N(0) (5.14)

Inequality (5.14) will not continue being true in general for positive
times due to the terms *i (t) in (2.54). Notice also that we can assume strict
inequalities in (5.14), except for a set of zero probability.
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It is convenient to rewrite (2.54) using a new set of variables:

!i (t)=!1(t) 8i (t) (5.15)

d{=
dt

(!1(t))3 ((1�N(t)) �N
j=1 8i )

(5.16)

where, by convenience we take the normalization {=0 at t=0. Then equa-
tion (2.54) becomes:

\ 1
N(t)

:
N

j=1

8i+ (!1(t))2 d!1(t)
dt

8i+
d8i

d{

=&
((1�N(t)) �N

j=1 8i )

(8i )
2 +

1+*i (t)
8 i

, i=1,..., N (5.17)

It follows by (5.15) that 81=1, whence (5.17) implies:

\ 1
N(t)

:
N

j=1

8 i+ (!1(t))2 d!1(t)
dt

=&\ 1
N(t)

:
N

j=1

8 i++(1+*1(t)) (5.18)

Using (5.18), (5.17) becomes:

d8i

d{
=\ 1

N(t)
:
N

j=1

8i +\8i&
1

(8i )
2++_1+*i (t)

8 i
&(1+*1(t)) 8i& (5.19)

where i=1,..., N. The reformulation of the problem (5.19) is only valid as
far as !1(t) does not vanish (cf. (5.16)). However, since the ordering in
(5.14) is not preserved for t>0, !1(t) could vanish when there are still
particles left, due to the (probabilistic) smallness of the terms *i (t). It will
be checked later that the vanishing of !1(t) cannot occur (in a probabilistic
sense) before the time TN .

A crucial estimate in the proof of Theorem 5.1 is the following:

Proposition 5.2. Let us consider the solution of the differential
equation:

8{=&({) \8&
1

82++\ 1
8

&8+ (5.20)

with initial data:

8(0)=;>0 (5.21)
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where, in (5.20) &({), is a function bounded in each time interval. Then, as
far as 8({) remains positive, the following identity holds:

�8
�;

=
;2(1&83)
82(1&;3)

exp \|
{

0
W(8(_)) d_+ (5.22)

where W(r)=(1+r&2r2)�((r2+r+1) r2). The function W(r) is singular at
r=0, decreases in the interval (0, 1) and vanishes at r=1.

Proof of Proposition 5.2. Let us define Z as follows:

Z=
�8
�;

On differentiating (5.20), it is easily checked, that Z solves:

dZ
d{

=&({) \1+
2

83+ Z&\1+
1

82+ Z (5.23)

Z(0)=1 (5.24)

Eliminating &({) in (5.23) with the help of (5.20), we obtain:

1
Z

dZ
d{

=\&
2
8

+
382

(83&1)+
d8
d{

&W(8) (5.25)

Integrating (5.25) with the initial conditions (5.21), (5.24) we deduce
(5.22). Then, the required properties of function W(r) can be easily proved
by means of standard computations. K

Proposition 5.2 might be used to analyse the asymptotics of solutions
of the LSW model. Since we are interested in the modified LSW model
(5.19), we need a more refined version of Proposition 5.2 that we formulate
as follows:

Proposition 5.3. Let us consider two functions 81=8({, ;1),
81=8({, ;2) that solve respectively the differential equations:

d8i

d{
=&({) \8i&

1
(8i )

2++_1++:({; ;i )
8 i

&(1++;({; ;i )) 8 i& (5.26)

8i (0)=;i (5.27)
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where ;i # (0, 1), i=1, 2 and the functions &({), +:(t; ;i ), +;(t; ; i ) are
bounded in each bounded interval. Then, as far as both functions 8({, ;i )
are different from zero, there holds:

9({)=
(;2&;1)(;1)2 (1&(81({))3)

(81({))2 (1&(;1)3)
exp \|

{

0
Y(_) d_+

+|
{

0

(81(s))2 (1&(81({))3)
(81({))2 (1&(81(s))3)

d(s) exp \|
{

s
Y(_) d_+ ds (5.28)

where W(r) is as in 5.2 and:

9({)=82({)&81({) (5.29)

Y(_)=[W(81(_))+b(_)+c(_) 9(_)] (5.30)

b({)=
(2+(81)3)

81((81)3&1) _
+:(t; ;1)

81

&+;(t; ;1) 81&
&_ +:(t; ;1)

81 82

++;(t; ;1)& (5.31)

c({)=&
2&({)

(81)3 (82)2 (81+82)+
&({)

(81)2 (82)2+
1

(81)2 82

(5.32)

d({)=_+:(t; ;2)&+:(t; ;1)
82

&(+;(t; ;2)&+;(t; ;1)) 82& (5.33)

Estimate (5.28) is just a generalization of (5.22) to the case when the
effect of the corrective terms in (5.26) that have not been included in (5.22)
is taken into account.

Proof of Proposition 5.3. The proof of this result is just an adapta-
tion of that of Proposition 5.2. We just keep track of the additional terms
that are in (5.26) and were not in (5.20). Using (5.26) and (5.29), we
readily obtain:

d9
d{

=&({) \1+
81+82

(81 82)2+ 9&\1++:({; ;1)
8182

+(1++;({; ;1))+ 9

+\+:(t; ;2)&+:(t; ;1)
82

&(+;(t; ;2)&+;(t; ;1)) 82 + (5.34)
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Eliminating &({) from the first term on the right hand side of (5.34),
we then arrive, after some simple computations, at:

d9
d{

=
2+(81)3

81((81)3&1)
d81

d{
9

&W(81) 9+b({) 9+c({)(9 )2+d({) (5.35)

9(0)=;2&;1 (5.36)

where we have used also (5.27). We then easily deduce (5.28) integrating
the ODE (5.35), (5.36) by means of the standard variation of constants
formula for linear equations. K

To proceed further with the proof of Theorem 5.1, we decompose the
space of radii as follows. Assume that function 1&F(!, 0) is supported in
the interval [0, !� 0]. Let us denote as \N the number N�[TN], where TN is
as in the statement of Theorem 5.1, and [ } ] is the integer part of its argu-
ment. Notice that (5.12) implies:

log(N )<<\Nt
N

TN
<<N (5.37)

We now pick a sequence of integers JN satisfying:

1<<JN<<
\N

log(N )
(5.38)

We then define:

RN=
\N

JN
(5.39)

Taking into account (5.37), (5.38), it readily follows that:

log(N )<<RN<<\N<<N (5.40)

Moreover, notice that MN=N�RN=JN[TN] is an integer.
We now split the interval [0, !� 0] as in (3.11), (3.12). Putting together

JN of the subintervals in (3.12), we obtain a coarser decomposition of
[0, !� 0]. We then obtain the following:

[0, !� 0]= .
[TN]

l=1

[`l , `l&1] (5.41)
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where:

`l=!JNl , l=0,..., [TN] (5.42)

It is immediately seen that:

[`l , `l&1]= .
JN

j=1

[!JN (l&1)+ j , !JN (l&1)+ j&1] (5.43)

In other words, each interval [`l , `l&1] has been divided in JN subin-
tervals. Taking into account (3.11) and (5.39), we readily deduce:

1&F(`l)=
\N

N
l (5.44)

As a next step, it is convenient to describe the self-similar solutions
given in (5.2), (5.3) using the variables 8i , {, that have been introduced in
(5.15), (5.16). Notice that by (5.1), (5.15) the average value of 8 would be:

(8) =
a
'1

(5.45)

Standard computations that use also the equation P('1)=0 show
that:

d
da

((8) )=
9(a&'1)

3('1)2 (1&a('1)2)
(5.46)

On the other hand, since P(a)=a4>0, it readily follows that '1>a,
whence, taking also into account (5.7), we obtain:

d
da

((8) )<0 (5.47)

From (5.8), (5.9) and (5.45) we derive the asymptotics:

lim
a � 0+

(8) =1 (5.48)

lim
a � ((2�3)2�3)&

(8) = 2
3 (5.49)

Let us denote as &({) the average value ((1�N(t)) �N
j=1 8j ) in (5.19).

For one of the self-similar solutions given in (5.2), (5.3), the function &({)
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takes the constant value given in (5.45), and that we will denote as &0 . By
(5.48), (5.49), we have that &0 # (2�3, 1).

It will be useful to notice that in the particular case where &({)=&0 #
(2�3, 1), an explicit solution of (5.20), (5.21) can be written. Indeed, let us
suppose that we define a constant / by means of the formula:

/=G('1;) (5.50)

where G( } ) is as in (5.3) and ; is as in (5.21). Then, the solution of (5.20),
(5.21) is given by the formula:

/(t+1)=G('18({)) (5.51)

where t and { are related by means of (5.16). In order to check this, it is
enough to notice that / is a constant of integration for the differential equa-
tion (5.20). In fact, using (5.16) and (5.20) it can be readily seen that:

/{=
&0('1)2

(t+1) _&G+\(&0&1)
&0('1)3 ('18({))+

1
&0 '1

1
'1 8({)

&
1

('18({))2+ G$&
Using (5.3), it follows that /{=0, whence the desired claim follows.
We will assume that &({) remains close to &0 during its whole evolu-

tion (and always in the interval ( 2
3 , 1)). Certainly, this can be made if

the distribution of radii remains close enough to one of the self-similar
solutions given in (5.2), (5.3). As a matter of fact we will show that &({)
remains close to &0 in this way with a standard bootstrap argument. More
precisely we will assume that &({) # (&0&=0 , &0+=0) for some =0>0, and
that the initial distribution of radii is very close to the self-similar solution
of the family (5.2), (5.3) with the corresponding average &0 . It will be
shown that under these assumptions the radii 8i evolve in such a way that
the self-similar distribution is approximately kept as well as the inequalities
&0&=0<&({)+=0 during the forthcoming evolution. In a similar way we
will prove the estimate:

!1(t)�C(t)1�3 (5.52)

for some suitable constant C>0 independent on N. We will assume (5.52)
and we will prove that this bound is recovered with a strictly smaller
bound C for later times, obtaining in this form a proof of (5.52).

It is convenient to define the evolution of the intervals [!� l , !� l&1],
l=1,..., MN , that have been defined in (3.11), (3.12). To this end, we just
make evolve each value ! by means of the ODE (2.54), where as function
*i (t) there we just take the value of *i (t) at the closest particle !i (t) to the
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right of the value !(t). Here we denote as !(t) the value of the solution of
(2.54) at time t with initial data ! and *i (t) as indicated. As we have
defined the evolution of each point !� j we can then define the evolution of
the whole intervals [!� l , !� l&1] by means of the evolution of their extreme
points. Notice that in principle the points !� l , !� l&1 could reverse their
ordering. The evolution of intervals in the 8 variable will be made in an
analogous way. For convenience, let us write:

8� l=
!� l

'1

(5.53)

and let us denote as T{[8� l , 8� l&1] the evolution of the interval
[8� l , 8� l&1] by means of the previous law.

Our next goal is to show that the evolution of the intervals
T{[8� l , 8� l&1] preserve to some degree some of the most relevant proper-
ties of the evolution of intervals under the ODE (5.20). More precisely,
disjoint intervals remain disjoint under the evolution given by (5.20).
Although this cannot be asserted for the evolution of intervals of the form
[8� l , 8� l&1] described above, it turns out that the interaction between
them is rather small. Also, a discrete version of (5.22) holds. As a pre-
liminary step we prove a rough estimate for the size of the intervals
T{[8� l , 8� l&1]:

Lemma 5.4. Let us assume that for all {�{0 , &({)=(1�N(t)) �N
j=1

8j # (&0&=0 , &0+=0), where 2
3<&0&=0<&0+=0<1, and =0 is small enough

(depending on $ in assumption (H)). Suppose also that the hypothesis (H)
and (5.52) are satisfied, and also that 0�t�N. Then, there exists an
integer l0 independent on N such that, with a probability that can be made
arbitrarily close to one if N is large, we have:

diam([8� l , 8� l&1]) e[3&0&2&C=0] {�diam(T{[8� l , 8� l&1])

�diam([8� l , 8� l&1]) e[3&0&2+C=0] { (5.54)

during the range of times for which the interval T{[8� l , 8� l&1] is contained
in the set 8 # [ 1

2 , 1].

Proof. As a preliminary step we derive an estimate for !1(t). Integrat-
ing the ODE (5.18) and taking into account (4.1) we immediately obtain:

}(!1(t))3&(!1(0))3&
3(1&&0)

&0

t }�6=0 t (5.55)
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where we assume that N is large enough, and (5.55) holds with a probabil-
ity close to one. From now on, we will make these assumptions without
explicitly stating them.

Using (5.16) as well as Proposition 3.1 (in order to estimate !1(0)) we
deduce with probability close to one that:

1
C

e[3(1&&0)&C=0] {�t�Ce[3(1&&0)+C=0] { (5.56)

where from now on C>0 is a constant independent on N, t, that can
possibly change from line to line.

Let us assume that the evolution of 8� l , 8� l&1 is denoted by the func-
tions 81(t), 82(t) in Proposition 5.3 respectively. Notice that functions
b({), c({), d({) in (5.31)�(5.33) can be estimated under our current assump-
tions as follows:

|b({)|�C(=N)2�3 (N )1�3 %(t+1)1�3 (5.57)

|c({)|�C (5.58)

|d({)|�C(=N)2�3 (N )1�3 %(t+1)1�3 (5.59)

where % (that appears in (4.1)) has been chosen large enough. Taking into
account our choice of !� l in (3.11), (3.12), and also the asymptotics of G(')
(cf. (5.3)), it follows that:

|!� l&!� l&1|�C \lRN

N +
1�:1&1 RN

N
(5.60)

We now derive an estimate for the time that takes for any of the func-
tions 81 , 82 solving (5.26) to become of order one. Let us write 8i=1+..
Linearising in (5.26) and using (4.1), we arrive at:

d.
d{

=3&({) .&2.+O((=N)2�3 (N )1�3 %(t+1)1�3) (5.61)

Integrating (5.61) with the help of (5.56) and recalling the assumptions
in 5.4, we obtain:

( |1&8i | e[3&0&2&C=0] {&C(=N)2�3 (N )1�3 %e ;&{)

�|.|�(|1&8i | e[3&0&2+C=0] {+C(=N)2�3 (N )1�3 %e ;+{) (5.62)
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where ;&=max[3&0&2, 1&&0]&C=0 , ;+=max[3&0&2, 1&&0]+C=0 .
Taking into account the choice of initial data for the functions 8i it follows
that:

C \(l&1) RN

N +
1�:1

�|1&8i |�C \lRN

N +
1�:1

(5.63)

Combining (5.62), (5.63) and using the assumption (H), we immedi-
ately deduce that the terms of order (=N)2�3 (N )1�3 are negligible if l�2. In
particular this implies that the difference 8i&1 becomes of order one if :

\lRN

N +
1�:1

e[3&0&2&C=0] {
r1 (5.64)

We now use a classical continuation argument. It is readily seen that
9 defined in (5.29) satisfies at t=0 the estimate (cf. (5.60)):

|9 |�L \lRN

N +
1�:1&1 RN

N
e[3&0&2+C=0] { (5.65)

where L is a large constant independent on N, { to be precised later.
As far as the estimate (5.65) is satisfied we can obtain from (5.28) and

(5.57)�(5.59) the bound:

|9 |�C \lRN

N +
1�:1&1 RN

N
(1&(8� 1)3)

(1&(81({))3)

_exp \|
{

0
W(81(_)) d_+

CL
l ++C |

{

0

(1&(81(s))3)
(1&(81({))3)

|d(s)|

_exp \|
{

s
W(81(_)) d_+

CL
l + ds (5.66)

where the constant C is independent on L. Taking into account the definition
of W(8), it can be easily checked that the integral term �{

0 W(81(_)) d_ is
uniformly bounded. Then, using (5.59), it is not hard to derive the estimate:

|9 |�C _\lRN

N +
1�:1&1 RN

N
e[3&0&2+C=0] {+(=N)2�3 (N )1�3 %(t+1)1�3&

(5.67)
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where l�l0 and l0 is an integer dependent on L but not on %, N, t. Using
the assumption (H) it follows that for t�N, and N large enough:

|9 |�C \lRN

N +
1�:1&1 RN

N
e[3&0&2+C=0] { (5.68)

Since in (5.68) we recover (5.65) with a new constant C independent on L,
a standard continuation argument shows that this estimate is valid not
only at t=0, but for any t in the interval [0, N]. This finishes the proof
of the upper estimate for the diameter of T{[8� l , 8� l&1] in (5.54). The
proof of the lower estimate can be made exactly along similar lines, whence
the proof of Lemma 5.4 is concluded. K

We also have the following result:

Lemma 5.5. Under our current assumptions, suppose that one
particle has an initial radius !j (0) in the interval (!� l , !� l&1), l=1,..., MN .
Then the subsequent radius !j (t) belongs to the set T{(!� l+1 , !� l&2), where
by definition !� &1=!� 0 . Moreover, the subsequent points T{(!� l) remain
ordered during their whole evolution, i.e.:

T{(!� l)<T{(!� l&1), l=1,..., MN (5.69)

Proof. The proof of Lemma 5.5 is rather similar to that of
Lemma 5.4. Indeed, let us remark that writing the evolution equations for
the functions 81=! j (t)�!1(t) and 82=!� k(t)�!1(t) where k takes the values
l&1, l we can derive an estimate similar to (5.66). As in Lemma 5.4, the
second term in the right-hand side there is negligible compared with the
first one under the assumption (H). The first term in the right-hand side
of (5.66) is exactly of the order of magnitude of any of the intervals
T{(!� l , !� l&1), T{(!� l&1 , !� l&2), T{(!� l+1 , !� l). It is then not hard to check
that the particle !j (t) remains inside T{(!� l+1 , !� l&2) during the whole
range of times considered in Lemma 5.4. The proof of (5.69) is just a conse-
quence of the fact that the last term in (5.66) is negligible when compared
with the previous one, and then it cannot alter the relative order of these
points. K

We can now consider the evolution of the whole group of intervals
[`l , `l&1]. By means of Lemmata 5.4, 5.5 we can show that the diffusion
of particles through the boundaries of these sets is a negligible effect. For
convenience we recall that the intervals [`l , `l&1] have been decomposed
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in a set of intervals (cf. 5.43). We define intervals [ �̀ l , �̀ l&1]/[`l , `l&1]
as:

[ �̀ l , �̀ l&1]= .
JN&1

j=2

[!JN (l&1)+ j , !JN (l&1)+ j&1] (5.70)

We can now state the main features of the evolution of the intervals
[ �̀ l , �̀ l&1].

Lemma 5.6. Under our current assumptions, the intervals T{[ �̀ l ,
�̀ l&1] remain disjoint during their whole evolution for times 0�t�N, with
probability close to one as N � �.

Let us denote as Ll({) the length of each interval T{[ �̀ l , �̀ l&1]. If we
denote as 8l({) the evolution of the point �̀ l , then the following identity
holds:

Ll({)=
Ll(0)(8� l)2 (1&(8l({))3)

(8l({))2 (1&(8� l)3)
exp \|

{

0
W(8l(_)) d_+ (1+vN, l(t))

(5.71)

where vN, l(t) is a number that can be made arbitrarily small if N � �
uniformly in l, t, with probability arbitrarily close to one. The number of
particles contained in each interval T{[ �̀ l , �̀ l&1] is \N(1+$N, l(t)), where
\N has been defined before and $N, l(t) can be made uniformly small with
probability close to one if N>>1.

Proof. The fact that the intervals T{[ �̀ l , �̀ l&1] remain disjoint during
their evolution is just a consequence of Lemma 5.5. Indeed, at {=0 the
intervals T{[ �̀ l , �̀ l&1] are separated between themselves by subintervals of
the form [!JN (l&1)+ j , !JN (l&1)+ j&1] with j=1, JN . It then follows that the
intervals T{[ �̀ l , �̀ l&1] are contained in the intervals [T{(`l), T{(`l&1)],
whence the disjointness of the sets T{[ �̀ l , �̀ l&1] follows. The proof of (5.71)
is completely similar to the one of Lemma 5.4, taking into account the
smallness of the last term in (5.66) under the assumption (H). Notice to
this end that by (5.38) the number l involved is larger that l0 as N � �.
Finally the statement about the number of particles is a consequence of
(3.15), (5.40). K

We now need to analyse the effect that the evolution of the particles
produces in the average value &({)=(1�N(t)) �N

j=1 8j (t). For t=0, &({) is
arbitrarily close to &0 as N � �, with probability one, due to the classical
large numbers law. In order to estimate &({) we will restrict our attention
to the particles included in the intervals T{( �̀ l , �̀ l&1], because those
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remaining in the sets T{[`l , `l&1]"T{[ �̀ l , �̀ l&1] are a negligible number.
In fact, due to Proposition 3.1 and the choice of \N , RN (cf. (5.37)�(5.39)),
as well as Lemma 5.6, it follows that the number of particles in these last
sets is of order:

2
N(t)
\N

RN<<N(t) (5.72)

where, as usual N(t) is the number of remaining particles. It then follows
that during the desired range of times the following approximation holds:

&({)=
(1+o(1))

N(t)
:

[8j (t) # �l T{[ �̀
l , �̀

l&1]]

8 j (t) (5.73)

as N � � with probability arbitrarily close to one.
Before concluding the proof of Theorem 5.1, it is instructive to

describe the main argument in the continuous case (without fluctuations)
since it is simpler. We will work locally in a neighbourhood of &({)r&0 .
Let us write:

&({)=&0+*({) (5.74)

Keeping in (5.20) the linear terms in *({) only, we would obtain after
some simple manipulations:

|
{

0
W(8(_)) d_=|

8({)

;

W(8) d8
(&0(8&1�82)+(1�8&8))

&|
{

0

W(8(_))(8&1�82) *(_) d_
(&0(8&1�82)+(1�8&8))

(5.75)

Let us denote as 8� the solution of :

d8
d_

=&0 \8&
1

82++\ 1
8

&8+ (5.76)

such that:

8� ({)=8({) (5.77)

We will write ;� =8� (0). Due to the term *({), ;� is in general different
from ;. Recalling (5.50), (5.51) it follows that:

(t+1) G('1;)=G('1 8� ({)) (5.78)
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Differentiating (5.78) with respect to ;, and using (5.22), (5.77) as well
as the differential equation for G we obtain:

exp \|
{

0
W(8� (_)) d_+=exp \|

8� ({)

;�

W(8) d8
(&0(8&(1�82))+((1�8)&8))+

=
(1&(;� )3)

(1&(8� ({))3)

P('18� ({))

P('1 ;� )
(5.79)

Plugging (5.75), (5.77), (5.79) into (5.22) we arrive at:

�8
�;

=
;2(1&(;� )3)
82(1&(;)3)

P('1 8)

P('1 ;� )
exp \&|

{

0
F(8(_)) *(_) d_+ (5.80)

where:

F(8)#
W(8)(8&1�82)

(&0(8&1�82)+(1�8&8))
(5.81)

In (5.80) we can make two approximations. First, notice that due
to (5.77) and the smallness of *({), 8 and 8� are rather close if 8 is at a
distance of order one from 8=1. If 8&1 is small, the contribution of
F(8) will be negligible. This suggests at once the approximation F(8(_))r

F(8� (_)). On the other hand, linearizing the terms in *(_) we arrive at:

�8
�;

=
;2(1&(;� )3)
82(1&(;)3)

P('18)

P('1;� ) _1&|
{

0
F(8� (_)) *(_) d_& (5.82)

From (5.16) and (5.78) it now follows that:

G('18� (_))=G('1 8) e&('1)3 &0 ({&_) (5.83)

whence, F(8� (_))=K(8, {&_).
Now notice that as {>>1, ;� approaches one. Taking into account (5.71)

we can derive estimates of &({). In view of the previous approximations we
can rewrite (5.82) to the leading order as:

382 d8
P('1 8) _1+|

{

0
K(8, {&_) *(_) d_&=

d;
'1(1&a('1)2)(1&;)

(5.84)

For large times only particles with ; close to one survive. Then, the
initial distribution of particles for radii close to ;=1 is essential in determin-
ing the long term distribution of radii (cf. ref. 8). If such initial distribution
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has the form G0(!)rC('1&'1;):1 as ! � '1 , and if we denote as ` the
fraction of radii left above some particular number 8, it then follows that:

2a!2 d!
P(!) _1+|

{

0
K \ !

'1

, {&_+ *(_) d_&=&
d`
`

(5.85)

where we have introduced the change of variables 8=!�'1

Taking into account that dG(!)�G(!)=&(3a!2 d!)�P(!), where G(!)
is as in (5.3), we can rewrite (5.85) as:

dG(!)
G(!)

+|
{

0
*(_) d! Z(!, {&_) d_=

d`
`

where dZ(!, {&_)&K(!�'1 , {&_) (dG(!)�G(!)), and we are using the
normalization Z(0, {&_)=0. Integrating this last equation, we obtain an
expression for the distribution of radii:

`(!, {)=G(!) exp \|
{

0
Z(!, {&_) *(_) d_+ (5.86)

Finally, we remark that &({)=&0+*({)=�'1
0 `(!, {) d!. After a new

linearization in *(_), we would deduce the following Volterra integral
equation for *({):

*({)=|
{

0
m({&_) *(_) d_ (5.87)

with:

m({)#|
'1

0
Z(!, {) G(!) d! (5.88)

It is not hard to check from the previous computations that m({) is
negative and decreasing. In Appendix A at the end of the paper it will be
shown that, under these assumptions, the solutions of (5.87) decay expo-
nentially in time. Strictly speaking, the only solution of (5.87) is *({)#0.
However it should be taken into account that there are higher order terms
that have been neglected in (5.87), and that this equation is only an
approximation for long times. Due to this exponential decay, we obtain a
fast approximation of the solutions of the LSW model to the self-similar
behaviour given in (5.2), (5.3).

104 Vela� zquez



End of the Proof of Theorem 5.1. In order to conclude the proof of
the theorem, it only remains to extend the argument above to the problem
with fluctuations. Basically, we have to retrace the steps in the previous
analysis, to adapting them in a suitable way to the system (5.19). Let us
denote by #N a small positive number that will be precised in the course of
the argument, and that essentially provides an upper bound of *({)=
&({)&&0 , where we understand that #N � 0 as N � �. For each 8l({), we
define 8� l(_) and ;� l exactly as 8� (_) and ;� were defined above. As far as
|*({)|�#N , we have the following version of (5.75):

|
{

0
W(8(_)) d_=|

8({)

;

W(8) d8
(&0(8&1�82)+(1�8&8))

&|
{

0

W(8(_))(8&1�82) *(_) d_
(&0(8&1�82)+(1�8&8))

+|
{

0
O \(1&8(_))(#N)2

(8(_))2 + d_ (5.89)

The last term in (5.89) can be estimated uniformly as O((#N)2) with
the help of (5.62) as far as 8({)>0. Arguing then exactly as in the con-
tinuous case, we obtain the following version of (5.82):

Ll({)=
Ll(0)(8� l)2 (1&(;� l)3)

(8l({))2 (1&(8� l)3)

P('18l({))

P('1 ;� l)

_exp \&|
{

0
F(8l(_)) *(_) d_+ (1+O((#N)2)) (5.90)

where we have used (5.71), and by assumption the term (#N)2 dominates
the terms vN, l there. Using now classical continuous dependence results for
ODEs we can approximate 8l(_) by 8� l(_) and then linearize (5.90), as it
was made in the continuous case. The result turns out to be:

Ll({)=
Ll(0)(8� l)2 (1&(;� l)3)

(8l({))2 (1&(8� l)3)

P('18l({))

P('1;� l)

__1&|
{

0
F(8� l(_)) *(_) d_& (1+o(#N)) (5.91)

Let us notice that, by taking N large enough, we obtain an initial dis-
tribution of radii arbitrarily uniformly close to the selfsimilar distribution
in (5.2), (5.3) with probability close to one. Using continuous dependence
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results for the system (5.19) (see ref. 7 for some results in that direction for
the classical LSW model), we would obtain that *({) can be made smaller
than #N for times of order one, although large if #N is chosen greater than
the corrective term due to the large numbers law. As a matter of fact, we
can assume that this approximation can be made for times large enough as
to allow to approximate ;� l by one for the remaining particles. With a
suitable choice of #N such that #N<<1 but #N large enough, we then obtain,
that |*({)|�#N�10, say, for 0�{�{N , with {N large as N � �, and that
for {�{N we have:

3(8l({))2 Ll({)
P('1 8l({)) _1+|

{

0
K(8l({), {&_) *(_) d_&

=
Ll(0)(1+o(#N))

'1(1&a('1)2)(1&8� l)
(5.92)

where K(8, {&_) is exactly as in the continuous case analysed above.
Notice that (5.92) is analogous to (5.84). As in the continuous case we can
introduce the change of variables !l=8l �'1 . On the other hand, assuming
that l>>1 (say larger than JN in (5.38)), and taking into account (3.11),
we can obtain an approximation Ll(0)�(1&8� l)=(\N �:1l\N)(1+o(#N))
=(1�:1l)(1+o(#N)). Then (5.92) becomes:

3a(!l({))2 L� l({)
P(!l({)) _1+|

{

0
K \!l({)

'1

, {&_+ *(_) d_&=
1
l

(1+o(#N)) (5.93)

where L� l({) stands by the length of the intervals [ �̀ l , �̀ l&1] rewritten in the
!-variable. In the range of times considered in this Theorem, the ``differen-
tials'' L� l({) are uniformly small, independently on #N . Using Taylor's
theorem, as well as the differential equation for G, we can then write:

$l(ln(G(!)))+|
{

0
*(_) $lZ(!, {&_) d_=

1
l

(1+o(#N)) (5.94)

where from now on $lF(!) stands by F(!l({))&F(!l&1({)). Let us denote
as l*=l*({) the largest value of l for which !l is not still zero. Adding the
sequence of equations (5.94) for l in a given interval (say between l and l*),
would then provide the formula:

G(!l({))
G(!l*({))

exp(�{
0 *(_) Z(!l({), {&_) d_)

exp(�{
0 *(_) Z(!l*({), {&_) d_)

=\ l

l*+
(1+o(#N ))
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and taking into account that G(!l*({))=1+o(#N), and Z(!l*(%), {&_)=
o(#N) with probability close to one, we deduce that:

S(!l({))#G(!l({)) exp \|
{

0
*(_) Z(!l({), {&_) d_+

=(1+o(#N)) \ l

l*+
(1+o(#N ))

(5.95)

Notice that N(t) in (5.73) is approximately \N l*(1+o(#N)), since the
number of particles in each interval [ �̀ l , �̀ l&1] is or order \N with a
corrective term independent on #N . On the other hand, the term o(1) in
(5.73) is also independent on #N for the range of times that we are consid-
ering. Notice also that 8j=(1+o(#N))(!j �'1), due to the probabilistic dis-
tribution of the maximum radius. We then rewrite (5.73) as:

&({)=
(1+o(#N))

\Nl*'1

:
[8j (t) # �l T{[ �̀

l , �̀
l&1]]

! j (t) (5.96)

The description of the evolution of the sets T{[ �̀ l , �̀ l&1] that was
given above establishes that between two values of !l({) there are roughly
\N(1+o(#N)) particles. Using this fact, as well as (5.95) and then (5.94), we
can rewrite (5.96) as:

&({)=
(1+o(#N))

l*'1

:
l*

l=JN

!l(t)

=
(1+o(#N))

'1

:
l*

l=JN

!l(t)
l

_\G(!l({)) exp \|
{

0
*(_) Z(!l({), {&_) d_++

1+o(#N )

=
(1+o(#N))

'1

} :
l*

l=JN

!l(t)(S(!l({)))1+o(#N ) $l(S(!))
S(!l({))

=&
(1+o(#N))

'1

} :
l*

l=JN

$l[!l(t)](S(!l({)))1+o(#N )

The last formula is just a Riemann approximation of the integral
�'1

0 (S(!))1+o(#N ) d!. Such approximation is independent on #N because it
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only depends on the properties of the partition of the interval [0, '1].
Making a new linearization on *({), we then easily obtain that:

*({)=|
{

0
m({&_) *(_) d_+o(#N) (5.97)

where m({) is as in the continuous case analysed above. Equation (5.97)
can be analysed as indicated in the Appendix, Proposition A.1, to show
that |*({)|�o(#N) with probability close to one. Since all the results above
were derived under the assumption that |*({)|�C#N , we then obtain the
validity of this inequality for all later times. Using (5.90), the asymptotic
distribution of particles then follows. K

6. CONCLUDING REMARKS

In this paper a model for the evolution of the distribution of radii of
a set of particles, whose size changes due to the diffusion of a concentration
field, has been derived. The resulting model is a correction of the classical
LSW equations, that includes, in the rate of growth of the particles, the
leading order of the stochastic fluctuations that are due to the probabilistic
character of the distribution of particles in space. The derived model takes
a simpler form if the volume fraction filled by particles is smaller that 1�N 2.
It has been recently shown (cf. ref. 8) that the long term asymptotics of the
LSW system depends in a very sensitive way on the initial distribution of
particles, and more precisely on the shape of this initial distribution near
the maximum radius. The goal of this paper was to understand if the
stochastic fluctuations mentioned above could select somehow one of the
possible asymptotics among all the possibilities for the LSW model. The
reason why this possibility should deserve some attention, is that the effect
of the stochastic fluctuations, although small, could be in principle
extremely important for radii near the maximum value. It turns out that
the answer to the question above is a negative one, at least for small
volume fractions. It is important to observe, that once the discrete charac-
ter of the problem is taken into account the relevant problem to be con-
sidered is not the long term asymptotics, but the intermediate asymptotics
for long times, but not so much as to have a dynamics dominated by fluc-
tuations. The computations in Section 3 indicate that stochastic fluctua-
tions should become very important as soon as the remaining number of
particles is of order log(N ). Before this, for times that still allow for a con-
tinuous description of the distribution of particles, the results of this paper
show that the self-similar solutions that according to the classical LSW
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theory should be eliminated, may provide possible intermediate asymptotics
for the distribution of particle sizes.

It is interesting to compare the results in this paper with those were
previously obtained considering the LSW model as a limit of the Becker�
Do� ring kinetic system. In that case there was a natural selection mechanism
of the solution established in the LSW theory (cf. ref. 13). The main dif-
ference between the model considered in ref. 13 and the one studied in this
paper, is that in ref. 13 nucleation effects are taken into account. In the
analysis of this paper (and also refs. 5�8), particles can only disappear, but
they cannot be created. The results obtained in this paper, as well as those
in refs. 7, 8, 13 strongly indicate that, at least for small volume fractions,
the validity of the LSW theory relies on the existence of a kinetic fluctua-
tions in the size of the particles. Other regularization mechanisms, as for
instance the collisions between growing particles that were suggested in
ref. 5, occur with a too low probability for volume fractions smaller that
1�N 2.

There are several questions that have been noticed in this paper and
that deserve a more detailed analysis. Firstly, it has been assumed that the
volume fraction of particles is smaller that 1�N 2. The approximations made
in Section 2.2 cease being valid for larger volume fractions. On the other
hand, the smallness of this volume fraction has been repeatedly used in
Section 5, in order to show that some ``macroscopic differentials'' of radii
evolve basically without interaction with another regions. There is another
interesting feature related with this fact. More precisely, there are some self-
similar solutions with a singular density of particles near the maximum
radius. It has been shown in Theorem 5.1 that the self-similar behaviour for
the range of times considered in this paper can be proved only if the
volume fraction of particles is smaller than 1�N (1�2)(1+3�:1), where :1 is as
in (5.4). It is not clear if this critical volume fraction is the optimal one.
Actually, such value appears due to the estimate (4.1) for the noise terms
that are generated by stochastic fluctuations on the positions of the par-
ticles. It is very likely, however that estimates like (4.1) for only a large
fraction of the particles could be obtained for larger volume fractions, and
this should be enough to show results analogous to Theorem 5.1. In any
case, a better understanding of the probabilistic properties of the noise
terms *j (t) given in (2.55) seems needed in order to clarify these point.

A problem that looks most interesting is the analysis of the dynamics
driven by fluctuations, i.e., when the number of remaining particles is of
order log(N ) or smaller. This problem has not been addressed in this paper
at all. Strictly speaking, all that has been shown in this paper is that the
dynamics dominated by fluctuations begins only after that number of par-
ticles is left. It would be interesting to compute more in detail the time scale

109Stochastic Fluctuations in Dynamics of LSW Model



dominated by fluctuations and to describe the probabilistic properties of
such regime. The estimates in Section 5 indicate that the noise terms *j (t)
can then be ignored, at least for initial distributions of particles that decay
fast enough near the maximum radius.

Finally, throughout this paper it has been assumed that the initial dis-
tribution of particles is homogeneous in space. It would be interesting to
investigate if the generation process of the distribution of particles suggests
to assume the existence of correlations between the positions of the par-
ticles. Many of the computations in this paper should be made in a dif-
ferent way in such a case.

APPENDIX A: ANALYSIS OF AN INTEGRAL EQUATION

In this Appendix we study some properties of the integral equation
(5.87). More precisely, we analyse the properties of the problem:

*({)=|
{

0
m({&_) *(_) d_+ g({) (A.1)

where g({) is a bounded function. The following result holds:

Proposition A.1. Assume that the kernel m({) is smooth, negative
and satisfies dm�d{>0, and lim{ � � m({)=0. Then, the solution of (7.1) is
given by a convolution operator in the form:

*({)=|
{

0
q({&_) g(_) d_ (A.2)

where q({) can be bounded in the form:

|q({)|�Ce&+{ (A.3)

for some +>0.

Proof. The proof of Proposition 7.1 can be obtained by means of the
standard Laplace transform. Let us denote such transform of any given
function by means of capital letters. Equation (7.1) then becomes:

4(z)=M(z) 4(z)+G(z) (A.4)

Proposition 7.1 would follow as soon as we show that function
(1&M(z)) has not zeroes in the half-plane [Re(z)�0]. Taking into account
that M(z) decays like 1�|z| as |z| � �, using a continuity argument, it is
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enough to show that function (1&=M(z)) does not have a root in the line
[Re(z)=0] for any = # (0, 1]. By the definition of the Laplace transform,
we then need to examine the roots of :

0(|)=1&= |
�

0
m({) ei|{ d{=0, for any real | (A.5)

Since m({)<0, it follows that 0(0)>0. On the other hand, integrating
by parts we readily obtain that for |{0:

0(|)=1+
=

i| |
�

0

dm({)
d{

ei|{ d{+
=

i|
m(0)

=1+
=

i| |
�

0

dm({)
d{

[ei|{&1] d{

=1+
2=ei|{�2

| |
�

0

dm({)
d{

sin \|{
2 + d{

The imaginary part of 0(|) is then given by:

Im(0(|))=
2=
| |

�

0

dm({)
d{

sin2 \|{
2 + d{

and this quantity is strictly positive for |{0 under our assumptions. K

We show that the function m({) defined in Section 5 satisfies the
assumptions in Proposition A.1. Taking into account the definition of
Z(!, {) and using (5.83), we obtain:

Z(!, {)=|
!

0
F \ 1

'1

G&1(G(') e&('1)3 &0{)+ dG(')
G(')

(A.6)

where F( } ) is as in (5.81). We then make the change of variables
G(') e&('1)3 &0 {=%, and use (5.88) to obtain:

m({)=&|
'1

0
G(!) _|

e&('1)3 &0 {

G(!) e&('1)3 &0 {
F \ 1

'1

G&1(%)+ d%
% & d! (A.7)
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that immediately implies that m({) is negative. It is easily seen that m({)
exponentially approaches to zero. Finally, differentiating (A.7), it turns out
that:

dm({)
d{

=('1)3 &0 |
'1

0
G(!) _F \ 1

'1

G&1(e&('1)3 &0 {)+
&F \ 1

'1

G&1(G(!) e&('1)3 &0{)+& (A.8)

Simple computations show then that:

F(x)=
(1+x&2x2)

[(&0&1) x2+(&0&1) x+&0] x2 (A.9)

Differentiating (A.9) it readily follows that F(x) is decreasing. Since
G&1 is also decreasing, it follows that F((1�'1) G&1( } )) is increasing.
Taking into account that G(!)�1 it then follows from (A.8) that dm({)�d{
>0, whence the desired monotonicity follows.
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